
WeScheme:
The Browser is Your Programming Environment

Danny Yoo
WPI

dyoo@cs.wpi.edu

Emmanuel Schanzer
Harvard University

schanzer@bootstrapworld.org

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

Kathi Fisler
WPI

kfisler@cs.wpi.edu

ABSTRACT
We present a programming environment called WeScheme
that runs in the Web browser and supports interactive de-
velopment. WeScheme programmers can save programs di-
rectly on the Web, making them accessible from everywhere.
As a result, sharing of programs is a central focus that
WeScheme supports seamlessly. The environment also lever-
ages the existing presentation media and program run-time
support found in Web browsers, thus making these easily
accessible to students and leveraging their rapid engineering
improvements. WeScheme is being used successfully by stu-
dents, and is especially valuable in schools that have prohi-
bitions on installing new software or lack the computational
demands of more intensive programming environments.

Categories and Subject Descriptors
D.3.4 [PROGRAMMING LANGUAGES]: Processors;
K.3.2 [COMPUTERS AND EDUCATION]: Computer
science education

General Terms
Design, Languages

Keywords
programming environments, Web

1. INTRODUCTION
A programming environment that runs entirely inside a

Web browser offers many benefits to educators and students:

• It is“zero-install”, in that any user with a Web browser
can use the environment without installing other tools.
This is an advantage at institutions that have restric-
tions on what software can be installed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE 2011, June 27–29, 2011, Darmstadt, Germany
Copyright 2011 ACM 978-1-4503-0697-3/11/06 ...$10.00.

• By using Web technologies like the Document Object
Model (DOM) and Cascading Style Sheets (CSS), it
can reuse the engineering effort of several companies
who are competing to add features and performance.

• Giving the students access to the Web’s display tech-
nology offers them an incremental path from Web au-
thoring to programming, i.e., from statics to dynamics.

• It can allow for the development of mashups, programs
composed of several Web applications working together.
It offers the promise of deep interoperability with con-
tent and programs on the Web, like Flickr and Google
Maps, and makes for interesting and novel program-
ming exercises.

• It suggests storing programs in the Cloud, which en-
ables easy global sharing. An important special case
of “sharing” is with oneself: students can easily be-
gin work at school, resume at home, continue again at
school and so on, always having access to their “files”.

We present WeScheme, a Web-based programming environ-
ment for the Scheme [11] and Racket [5] programming lan-
guages. It provides a syntax-highlighting program editor,
an interactive tool to run programs on-the-fly, and a hub for
sharing programs. Beneath the surface, WeScheme provides
a sophisticated runtime that enables interactive programs to
be written in a sequential, synchronous style, a model that
is particularly well-suited to beginners for its simplicity.

2. EDUCATIONAL CONTEXT
WeScheme is used primarily to support Bootstrap [10],

an educational program designed to help middle- and high-
school students see the ties between the mathematics they
are learning, and computation. At this stage students are
studying algebra, coordinate geometry, and simple model-
ing. The Bootstrap curriculum uses just these concepts to
create interactive animations and games [2]. This context
helps students find the mathematical concepts appealing and
thus more approachable. In turn, students eventually realize
that mathematics is not just a dry textbook discipline but
one that has direct application to topics they care about.

Because of this algebra-rich curricular context, we make
heavy use of functional programming. In functional pro-
gramming, programmers write functions in the mathemat-
ical sense: a function consumes inputs, produces a value,
and is deterministic. It computes the value using algebraic

Figure 1: WeScheme

substitution, as taught in schools. The kinds of values in
WeScheme are much more compelling than those presented
in a standard math textbook: rather than just numbers,
they can be strings and booleans, but also images, sounds,
and graphical animations. This combination of a simple
computational model (functions and substitution) over rich
values (strings, images, etc.) proves to be sufficient for writ-
ing quite sophisticated programs, including interactive games.
A full discussion of the details of this curriculum is given in
our textbooks [1] [3].
This educational mission has an impact on the design

of WeScheme. Though the underlying virtual machine is
very general and supports imperative programming, object-
oriented programming, and more [5], many of the technical
obstacles we have had to overcome have been to support
the algebraic model. WeScheme can thus provide a simple
programming interface for many Web programming tasks.

3. A QUICK TOUR OF WESCHEME
Figure 1 shows a screen-shot of WeScheme running inside

the Google Chrome browser. (The environment looks es-
sentially identical in other browsers.) The interface, which
borrows heavily from DrRacket [4] (formerly DrScheme), is
intentionally simple.
The toolbar at the top has the following commands:

• The Run button loads the program’s definitions for use
in the REPL.

• The Stop button interrupts the running program.

• The Save button saves the program onto the Cloud.

• The Share button allows the user to freeze the current
program and produce a stable URL that refers to it.
Accessing the URL presents an interface to look at the
source code, if allowed by the owner, and to run the
program outside the editing environment.

Below the toolbar is the Definitions pane which contains
a rich-text program editor (currently a fork of CodeMirror).

Figure 2: Examples in the REPL

The editor include a syntax highlighter with color-coding,
parenthesis-matching, and context-sensitive indentation, all
of which help users with the editing process.

The lower pane contains the REPL. A REPL presents
a calculator-like interface to a program. A REPL allows
a programmer to explore a program’s definitions directly
without having to create external binaries, etc. Instead,
when the user enters an expression at the prompt, the REPL
evaluates it, prints its value, and presents a fresh prompt.
The use of a REPL allows for lightweight exploration of
programs, and its interface can help cement the relationship
between algebra and computation.

WeScheme’s REPL makes heavy use of the browser’s dis-
play and interaction technology. The screenshot in figure 2
shows four examples. In the first, the user is examining
a fractional value; in the second, a repeated decimal. In
both cases, WeScheme presents them using representations
based on those of math textbooks. In the third example, the
user evaluates an expression whose value is a list of images,
which are all displayed in-line. In all three cases, WeScheme
exploits the browser’s display technology—JavaScript, can-
vases, and style-sheets—to present its output. The fourth
example shows an error. Error messages are presented as hy-
perlinks, and clicking highlights the relevant region of code.

Users can browse through their list of programs, and edit,
share, and delete them. Figure 3 shows such a listing. This
list, which takes the place of a typical filesystem, resides on a
cloud server, so the user sees the same list no matter where
they log in. In the entry for “Baduk”, the sharing icon is
grey because that program has not yet been shared. When
a user chooses to share a program, WeScheme shows the
dialog in figure 6. This lets the author choose whether or
not to divulge the program source. Once shared, WeScheme
generates a stable link; hovering over the sharing link (now
green) in the console, as shown in figure 4, provides this link,
and also the ability to upload it to various social networking
sites. Users who visit the shared URL will see the window
in figure 5, where they can run the program and, if allowed,
read the source code.

Figure 3: Program List

Figure 4: A Shared URL Link

Figure 5: Visiting a Shared Program URL

Figure 6: Sharing Dialog

4. IMPLEMENTATION TECHNOLOGY
WeScheme uses a compiler running on a cloud server.

When the user clicks Run, the program is sent to the re-
mote compiler, which converts the source into bytecodes.
Likewise, every time the user types an expression at the
REPL, it is sent to the server for compilation.

Of course, this architecture assumes continuous access to
a server. This assumption is common in many contemporary
Web-based systems such as Yahoo! Mail, Google Maps, etc.
However, there is no difficulty in generating a binary that
can be installed on the local host that provides access to the
compiler without the need for networking support; we have
simply not experienced demand for this yet. In this setup
WeScheme would still run in the browser, but to initiate it
the user would connect to a URL on the local machine rather
than to www.wescheme.org. A launcher could automate this
process by automatically feeding the URL to the browser,
so that the details are sufficiently transparent to the user.

The bytecodes generated by the compiler are those of the
Racket virtual machine [7]. The reader can think of this
as analogous to the bytecodes of the Java Virtual Machine,
though in fact the Racket language is richer in many ways
and can thus support a host of other programming languages
ranging from Java to Python (and the Racket project has
even had experimental support for these other languages).
We have implemented an interpreter in JavaScript for these
bytecodes, relying on the threaded virtual machine technol-
ogy [6] of most contemporary browser JavaScript implemen-
tations to optimize uses of the interpreter.

The programs that users write are similarly automatically
backed up to and saved on the Cloud. We currently use
Google’s AppEngine for this purpose. When using a local
compiler, we could save files to the local filesystem and pe-
riodically synchronize them on demand.

By virtue of exploiting the browser, we immediately and

automatically inherit improvements made by browser imple-
mentors. For instance, Web browsers recently added sup-
port for embedding videos inside Web pages in preparation
for HTML 5. For a user to include a video in the out-
put page (for instance, as a backdrop to a game) required
no additional work from us at all. To make these videos
programmatic objects—so that the user could, for instance,
query the video or send it commands—required only a small
amount of wrapping to make it an object in our virtual ma-
chine, on the order of about ten lines of code, most of which
are boilerplate.

5. EXPERIENCE AND EVALUATION
WeScheme is in active use by students in Bootstrap, the

program described in section 2. Students have created over
1000 programs in WeScheme, and over a quarter of these
have been shared, most of them with the source made public.
(These numbers naturally change on a daily basis.)
Many WeScheme users teach at schools with extremely

limited computing infrastructure. In particular, they face
two different kinds of limitations: limited computing power,
and locked-down systems. When systems are locked down,
it becomes impossible to install a programming environment
like DrRacket. When the systems are weak, even if the in-
structors can install DrRacket, its resource consumption is
so great that just starting and running it is virtually impossi-
ble. In contrast, these machines can still run Web browsers.
For instance, we recently had a school running Pentium III

hardware and Windows 2000 software, on 256 Mb of RAM—
a configuration over a decade old. On such a system today’s
DrRacket will barely start, but students were able to write
and run modest programs in WeScheme. As browsers get
leaner and more efficient, this gives WeScheme a significant
engineering edge.
One of the factors driving improvement in browsers is

the use of the same core browser engines in mobile plat-
forms. Indeed, smartphone Web browsers are now sophis-
ticated enough that one can run WeScheme directly in the
phone—as we have, though of course using the editor is an
exercise in masochism. However, while the phone is a poor
editing medium, it is perfectly reasonable to run programs
on phones. As phones are increasingly taken seriously as
computing platforms, and browsers are recognized as an im-
portant component, our decision to target JavaScript, which
may have seemed idiosyncratic, makes sense.1 Indeed, the
compiler underlyingWeScheme has also been used in college-
level courses that produce mobile phone applications.
The user interface of WeScheme is intentionally spartan,

in contrast to the visual complexity of many contemporary
programming environments. In this regard, and in many
details, WeScheme mimics DrRacket. The differences, how-
ever, suggest ways in which DrRacket can improve. Be-
yond easy sharing, as mentioned earlier, we use hyperlinks
to present error reports and also stack traces. DrRacket
uses an icon, which users must click on, to represent stack
traces. Many students have reported confusion about what
that icon represents, and do not even know that it is click-
able. In contrast, students have no difficulty understanding

1For instance, though some phone manufacturers lock down
application stores and place limits on choices of program-
ming languages, they still allow the deployment of applica-
tions using JavaScript in browsers.

the visual metaphor of the hyperlink, and indeed it invites
their exploration.

The limited space of this format makes it difficult to pro-
vide examples of program source and their output. How-
ever, because the programs are on the Web, readers can
access them easily! Readers can both run, and view the
source of (and thus easily modify and create their own ver-
sions of), the following programs: tinyurl.com/2924s2s

presents a game, while tinyurl.com/28jptyn shows a use
of the browser’s display framework. We suggest trying these
in Google Chrome.

6. RELATED WORK
WeScheme provides an on-line programming environment

and a deployment platform that live entirely on the Web.
Much of the related work in this area contain aspects of
this, though often not in combination.

Lively Fabrik [8] is a programming language that runs en-
tirely inside the browser without plugins. It is a simple, vi-
sual programming language consisting of components, pins,
and connections with a dataflow semantics; these compo-
nents are dragged and connected in a visual program edi-
tor. Yahoo Pipes (pipes.yahoo.com) is another specialized
visual programming language for defining RSS feeds from
data sources on the Web, using a similar set of tools to
connect modules and operations together. Each component
is implicitly an asynchronous event handler that listens to
changes in their inputs. In contrast, WeScheme supports a
general-purpose textual language with a strong tie to school
mathematics. WeScheme provides synchronous interfaces to
the Web’s asynchronous programming style (which we have
not discussed in the limited space of this paper), a feature
that Lively Fabrik and Yahoo Pipes do not support.

Lively Fabrik runs atop the Lively Kernel [12], which is
JavaScript augmented by an implementation of Morphic [9],
a Smalltalk GUI interface. In contrast, instead of porting
a different GUI library, we expose existing Web technology
as the user interface platform—thus giving an incremental
path from Web page authoring to programming, and also
easily incorporating innovations in this rapidly growing field
(such as the video example discussed in the paper).

Mozilla Skywriter (mozillalabs.com/skywriter/) (for-
merly known as Bespin) and CodeMirror (codemirror.net)
are both text editor frameworks that work on the Web.
Frameworks like these are needed because the plain textarea

provided by HTML doesn’t provide essential support for
editing programs. Both these frameworks provide features
such as syntax highlighting and indentation, though they
use different rendering strategies: Skywriter uses a canvas

element to render the editor, while CodeMirror uses nested
DOM elements.

WeScheme’s editor is based on CodeMirror, extended to
support our environment’s needs. We prefer CodeMirror’s
use of the DOM, as it allows a richer programmatic interface:
individual elements can be addressed naturally, for both in-
spection and manipulation (including, for instance, styling
with CSS). Using the DOM for a program editor also allows
the intriguing possibility of allowing graphical elements to
be used in program source code. WeScheme already allows
REPL values to be represented as graphical DOM nodes; it
should be technically possible to extend this graphical capa-
bility to program source as well, as found in DrRacket.

Web-accessible REPLs differ in how much of the work of

compilation and evaluation is done on the server versus the
client. WeScheme takes a middle-of-the-road approach by
compiling on the server-side, and evaluating the resulting
bytecodes on the client. We compile on the server side so
that we can reuse a well-tested, production-level compiler.
Non-interactive evaluators such as those on ideone (ideone.

com) and REPLs such as those on Try Ruby (tryruby.org)
or Try Haskell (tryhaskell.org) take the user’s program,
evaluate it entirely on the server side, and return the textual
output back to the user’s browser. This works well for tex-
tual output, but is impractical (due to bandwidth concerns)
for richer data like images and videos, and obviously useless
for interactive applications like games. Furthermore, these
cannot provide the programmer access to the browser’s own
rich display facilities, such as the DOM.
A server-based REPL has additional problems. These

evaluators have a choice of using session state on the server,
or re-evaluating the entire sequence of interactions to re-
construct the state of bindings in the REPL. Using session
state creates a resource management problem. However, re-
evaluating expressions is even more problematic. First, if the
definitions are computationally expensive, re-running all the
expressions can become intractable. More subtly, re-running
computations can produce surprising results. For instance,
here is an actual interaction in Try Ruby:

>> x = rand(6)

>> x

3

>> x

2

That is, the value of x appears to have changed between uses
even though x was not modified! This is because Try Ruby
re-evaluates the assignment to x, and of course there is no
guarantee that it will be bound to the same result. Needless
to say, this is a rather confusing interaction. Therefore, this
strategy can only be considered useful for toy programs.
In contrast to the strategy of running the program on a

server, there are several virtual machine interpreters that
run inside the browser, such as HotRuby (hotruby.yukoba.
jp) and OBrowser (www.pps.jussieu.fr/~canou/obrowser/
tutorial/). These use implementation techniques similar to
those in WeScheme.
At the other extreme from running all computation on the

server is the idea of performing all computation on the client.
The REPL in wscheme (wscheme.appspot.com) (not to be
confused with WeScheme) lies at the other end of the spec-
trum, by running entirely inside the user’s browser. It ac-
complishes this by using the Google GWT compiler (code.
google.com/webtoolkit/) to compile an existing Java im-
plementation of Scheme (jscheme.sourceforge.net/) into
JavaScript. While this strategy is attractive from the per-
spective of disconnected computation, wscheme’s REPL has
a major technical limitation relative to WeScheme: its eval-
uator does not implement cooperative multitasking (as re-
quired by JavaScript), so it is easy to starve the browser
of cycles—thus, for instance, wscheme cannot implement a
Stop button as found in WeScheme. In addition, its REPL
doesn’t produce stack traces with errors, and its error mes-
sages are not as informative as those of WeScheme.

Acknowledgements.
We thank Zhe Zhang, Brendan Hickey, Ethan Cecchetti,

and Scott Newman for contributions toWeScheme, and Guil-
laume Marceau for comments on the paper. This work is
partially funded by the US NSF and by Google.

7. REFERENCES
[1] M. Felleisen, R. B. Findler, K. Fisler, M. Flatt, and

S. Krishnamurthi. How to Design Worlds. 2008.
world.cs.brown.edu.

[2] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. A Functional I/O System or, Fun
for Freshman Kids. International Conference on
Functional Programming, 2009.

[3] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs. second
edition, 2010.
www.ccs.neu.edu/home/matthias/HtDP2e/.

[4] R. B. Findler and PLT. DrRacket: Programming
Environment. Technical Report PLT-TR-2010-2, PLT
Inc., 2010. racket-lang.org/tr2/.

[5] M. Flatt and PLT. Reference: Racket. Technical
Report PLT-TR-2010-1, PLT Inc., 2010.
racket-lang.org/tr1/.

[6] A. Gal, B. Eich, M. Shaver, D. Anderson,
D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based Just-in-Time Type Specialization for
Dynamic Languages. Programming Language Design
and Implementation, 2009.

[7] C. Klein, M. Flatt, and R. B. Findler. The Racket
Virtual Machine and Randomized Testing. Technical
report, Northwestern University, 2010.
plt.eecs.northwestern.edu/racket-machine/.

[8] J. Lincke, R. Krahn, D. Ingalls, and R. Hirschfeld.
Lively Fabrik: A Web-based End-user Programming
Environment. In Creating, Connecting and
Collaborating through Computing, 2009.

[9] J. H. Maloney and R. B. Smith. Directness and
Liveness in the Morphic User Interface Construction
Environment. User Interface Software and Technology,
1995.

[10] E. Schanzer. Bootstrap. www.bootstrapworld.org.

[11] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten,
R. Findler, and J. Matthews. Revised6 Report on the
Algorithmic Language Scheme. Cambridge University
Press, 2010.

[12] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz.
Web Browser as an Application Platform: The Lively
Kernel Experience. Technical report, Oracle, 2008.
labs.oracle.com/techrep/2008/abstract-175.html.

