This will be a small review sheet that covers the first few topics of CS3S.
However, to tell the truth, you might find the SPC web site more helpful. We
highly recommend you to the SPC web site — there’s a great online review on
the bottom of http://www-inst.eecs.berkeley.edu/ selfpace/. This will
try to cover misconceptions and problems that people have been running into.

1 Expressions

Scheme programs are built out of expressions. For example:

42

(x 5 6)
’i-am-a-quoted-symbol
(= a b)

are all considered expressions. You might not expect it, but + and the other
math symbols are also valid expressions:

STk> +
#[subr +]
STk> *
#[subr *]
STk> /
#[subr /]

We find that numbers are “self-evaluating” — the value of 42 is 42. Simple
enough. It’s sorta like a mathematician who starts off saying 0 = 0, but we find
that this rule keeps Scheme’s evaluation system simple.

Let’s take a slightly detailed look at what happens when we have parentheses.
In the case of (* 5 6), Scheme will take the following steps to evaluate this
expression:

e Evaluate the value of *, 5, and 6. 5 and 6 are self evaluating, so we stop
there. * is a primitive function that Scheme picks up. Scheme now knows
about these three elements.

e Assume the first item is a function, and apply it on the rest of the list.
This means that * will be applied on 5 and 6.

You should notice that there’s something weird happening; isn’t this defini-
tion circular? We’re defining evaluation in terms of evaluation!
This rule is necessary though. What happens here?

(x 2 (+ 1 20))

In order to compute this expression, we need to apply evaluation on *, 2, and
(+ 1 20). Ok, let’s look at (+ 1 20). 1 and 20 evaluate to themselves, and +
evaluates to a primitive function. Eventually, we “hit rock bottom” at Scheme

primitives. If we follow the rules of evaluation long enough, we’ll eventually get
an answer.

Note — wrapping expressions with regular parentheses in attempts to get it
into a list doesn’t quite work:

STk> ((list 1 2))

*** Error:
eval: bad function in : ((list 1 2))

This is because of the rules above on evaluation: (list 1 2) evaluates to the
list, and then the outer pair of parentheses tells Scheme to apply a function
with no arguments. The next section will elaborate on this.

2 Quotation

Now that we’ve talked about evaluation, it’s time to bend its rules with quota-
tion. You can quote something using the quote symbol (?) or with quote.

Let’s say we want to make a function, greeting, that takes a name and
returns a nice greeting;:

(define (greeting name)
(1ist ’hello name))

Let’s try it out:

STk> (greeting ’carol)
(hello carol)
STk> (greeting ’clancy)
(hello clancy)

Let’s try something else:

STk> (greeting ernie)

***x Error:
unbound variable: ernie

Ah! According to evaluation rules, Scheme will try to figure out what greeting
and ernie are. It knows about greeting, since we just defined it, but gets lost
at ernie.

What happens if we change the definition of greeting like this?

(define (bad-greeting name)
’ (hello name))

STk> (bad-greeting ’voldemort)
(hello name)

Ooops.

e When we quote an atom (symbol or number), Scheme will evaluate it as
itself.

e When we quote a list, Scheme will return a list with each element itself
quoted.

Another example:

STk> ’ (enumerate and (list (a (b) c)))
(enumerate and (list (a (b) c)))

This actually deals with some issues. First, you can make nested lists very easily
with quotation. Next, since Scheme isn’t really looking up the value of things,
we can use words like 1ist. Because we quote list, Scheme will treat it just
like any other quoted symbol.

This brings up the question: what happens when we do this?

STk> (’list 1 2 3)

**x* Error:
eval: bad function in : ((quote list) 1 2 3)

We find out two things here — ’1ist is just shorthand for the longer expression,
(quote 1list). Second of all, >1ist evaluates to the symbol “list”, and not the
list function, which is why this breaks.!

3 List manipulation

Let’s talk about list manipulation a little bit. You might have heard that Scheme
is a Lisp-like language. What does this mean? A small excerpt from the Jargon
file (http://wuw.tuxedo.org/ esr/jargon):

LISP n. [from ‘LISt Processing language’, but mythically from ‘Lots
of Irritating Superfluous Parentheses’] AT’'s mother tongue, a lan-
guage based on the ideas of (a) variable-length lists and trees as
fundamental data types, and (b) the interpretation of code as data
and vice-versa.

So Scheme makes it easy to do stuff with lists. What sort of stuff? Obviously,
we’d like to look at individual elements. Let’s look at the two primary functions
for getting at list elements, car and cdr.

The car of a list will give us its first element:

However, it is possible to force evaluation of a symbol with the eval function:
(eval ’(list 1 2)) does work. We won’t cover this in 3S, but it’s nice to know that it
works.

STk> car

#[subr car]

STk> (car ’(Jack and Jill))

jack

STk> (car ’ ((Herimone) and Ron))
(herimone)

STk> (car ’((Batman (and (Robin)))))
(batman (and (robin)))

The cdr of a list will give us the rest of the list.

STk> (cdr ’(Donald E Knuth))

(e knuth)

STk> (cdr ’((William Richard) Stevens))
(stevens)

STk> (cdr ’((John McCarthy)))

O

Notice that if a list has one element, cdr will still give us the rest of the list —
the empty list.

With these two functions, we can define convenient functions to reach the
first, second, and third elements of a list:

(define (first 1) (car 1))
(define (second 1) (car (cdr 1)))
(define (third 1) (car (cdr (cdr 1))))

. and so on.?

Other important functions include 1ist, cons, and append, which are list
building functions. Other useful functions include reverse and length, which
have obvious and not-so-obvious uses.

The two functions that seems to catch people off guard are cons and append.
cons takes in 2 elements. For 3S, we’ll assume that the second element is always
a list. Take a look:

STk> (comns ’la ’(vals))

(la vals)

STk> (cons ’(le) ’((miserables)))
((le) (miserables))

We can imagine the first argument squeezing into the second element.
Now let’s look at append. append only works with lists. Take a look:

STk> (append ’foo ’(bar))

*** Error:

2Scheme does provide these functions: cadr, and caddr to do the same thing as our second
and third.

append: argument is not a list: foo
STk> (append ’foo ’bar)

***x Error:
append: argument is not a list: foo

STk> (append ’(foo) ’(bar))
(foo bar)

Append will put two lists together, and breaks otherwise. 3

Using list is pretty simple: it takes in one or more arguments, and makes
a list of those elements.

STk> (list ’olympic ’gold)
(olympic gold)

What catches people, initially, is the fact that it’s perfectly legal to make a
list with one element:

STk> (list ’supercalifragilistexpialidocious)
(supercalifragilistexpialidocious)

STk> (list ’(list))

((1ist))

Time to start plugging advertisements. If you have any questions, you can
always contact us through the newsgroup, ucb.class.cs3s. Details on doing
this are on the SPC url above. However, if you like human contact, come by
to the SPC, and we’ll be glad to talk with you. Also, do come by and get the
work done as quickly as you can — you do not want to be at the SPC during
the last few weeks. Trust us: it’s not fun.

Let’s end with a nice quote by the late Richard Stevens:

“This process of digging up details and learning how things work
leads down many side streets and to many dead ends, but it is fun-
damental (I think) to understanding something new. Many times in
my books I have set out to write how something works, thinking I
know how it works, only to write some test programs that lead me
to things that I never knew. I try to convey some of these missteps
in my books, as I think seeing the wrong solution to a problem (and
understanding why it is wrong is often as informative as seeing the
correct solution.”

Good luck!

3We are sorta lying through our teeth: (append ’(foo) ’bar) =—> (foo . bar) doesn’t
technically break! (Neither does (cons ’foo ’bar)!) However, this is CS61A material — you
don’t need to worry about it for now.

