

Fun in the Web: Web based
programming environments

for functional programs

Danny Yoo
WPI

Functional

 event-driven programming

 on the Web!

(define (h a b)
 (sqrt (+ (sqr a) (sqr b))))

Functional...

This matters for education: algebra and functional
programming have a relationship that can

reinforce each other

+ =

… event driven...

●Works well for writing games (driven by events
like user interaction, clock ticks, etc...)

●Behaves appropriately for multiple platforms,
including both the desktop browser and the cell
phone

… on the Web

The Web is ubiquitous on both desktops
and smartphones

How do we make this program?

The World Programming Model

The “WORLD” represents
the state of our program, like
the distance from the sky

draw(world) = a picture of the
UFO at the given distance

We can write functions
that consume the world
and produce an output

draw(0) = draw(20) =

The World Programming Model

world_0 = 0

We can write a
function that
computes a new
world from the
previous one.

descend(world) =
 world + 20

world_1 = 20
= descend(world_0)

The World Programming Model

Clock tick: descend Key Press: ...

A World Program

(define UFO
 (bitmap/url “http://world.cs.brown.edu/1/clipart/ufo.png”))

(define (descend height) (+ height 5))

(define (draw height)
 (place-image UFO 150 height
 (empty-scene 300 300)))

;; The use of big-bang starts the world program.
(big-bang 0 ;; initially, let the height be zero.
 (on-tick descend 1/15) ;; tick every 15 frames a second
 (to-draw draw)) ;; use draw to draw the scene

User

OS

Callback

“World”

“World”

“World”

“World”

Problems

Challenges to World Programming
on the Web

● JavaScript is the language of the web browser
● We should be able to run World in JS
● There are problems inherent to JavaScript:

● Lack of user-friendly error messages
– Important for beginner programmers, since no one is

perfect

● But there are more serious issues...
asynchrony!

Asynchrony example 1: Image
Initialization

(define an-image
 (bitmap/url “http://...”))

(define another-image
 (bitmap/url “http://...”))

(overlap an-image another-image)
var anImage = new Image();
anImg.src = “http://...”;

var anotherImage =
 new Image();
anotherImage.src =
 “http://...”;

overlap(anImage, anotherImage);

+ =

“block until loaded”

What happens when we don't wait?

● In the best case...

Functional programs on top of
JavaScript need to be able to block.

This should be handled by the language,
 not the programmer.

var anImage, anotherImage;

var afterImageLoaded = function() {
 anotherImage = new Image();
 anotherImage.onLoad = afterAnotherImageLoaded;
 anotherImage.src = “http://...”;
};
var afterAnotherImageLoaded = function() {
 overlap(anImage, anotherImage);
};

anImage = new Image();
anImage.onLoad = afterImageLoaded;
anImage.src = “http://...”;

Asynchrony example 2:
Modal dialogs

key event (“y”)

Big-bang should be a function!

(define (user-chooses-yes?)
 (big-bang 'not-yet
 (to-draw ...)
 (stop-when choice-made?)
 (on-key key-pressed)))

(define (choice-made? w key)
 (not (eq? w 'not-yet)))

(define (key-pressed w a-key)
 (cond [(key=? a-key “y”) true]
 [(key=? a-key “n”) false]
 [else w]))

(if (user-chooses-yes?)
 (start-again)
 (quit-game))

After big-bang returns its
value (the world), we should

be able to branch on its value

This big-bang should wait
until choice-made? is true

Using big-bang for dialogs

● Big-bang should be a function that can return a
value

● Mechanically, big-bang needs to give control to
the browser to process events, to handle
events like clock ticks or key events
● JavaScript is a single-threaded, event-driven

language

● Again, we need to abandon control back to the
browser

User

OS

Callback

Control flow needs
to be relinquished

to the browser.

Browser

Can big-bang be an function?

(define (user-chooses-yes?)
 (big-bang 'not-yet
 (to-draw ...)
 (stop-when choice-made?)
 (on-key key-pressed)))

(define (choice-made? w key)
 (not (eq? w 'not-yet)))

(define (key-pressed w a-key)
 (cond [(key=? a-key “y”) true]
 [(key=? a-key “n”) false]
 [else w]))

(if (user-chooses-yes?)
 (start-again)
 (quit-game))

The rest of the computation
needs to be reinstated at

some future point

This big-bang must save the
rest of the computation... and

then release control!

Functional programs on JavaScript
need to be able to abandon and

restore their control context.

Solving these problems

Applying delimited control to
asynchronicity

● Javascript alone doesn't give us the necessary
control primitives to implement images as
values and functional big-bang.

● Control operators can be applied toward this
problem. (i.e. continuations!)

Delimited control operators

● Save
● Saves the current state of the computation

● Restore
● Restarts a saved computation

● Abort
● Abandons the current computation

● Prompt
● Delimits the extent to which the continuation is

captured and restored

Applying delimited control

● For image initialization:

var image = new Image();
saveContinuation();
image.onLoad = function() {
 restoreContinuation(image);
}
img.src = ...;

Applying delimited control

● For big-bang:

● On stopWhen():

function bigBang(initialWorld, ...) {
 theWorld = initialWorld;
 initializeEventHandlers();
 saveContinuation();
 abortContinuation();
}

restoreContinuation(theWorld);

Summary of the approach

● Delimited control operations allow programs to
wait
● Addresses the image loading race condition

● They allow computation to be suspended and
restored
● Allows browser events to be processed in the

middle of a long-running computation
● big-bang can be functional

Implementing the Evaluator

Prototypes

● Explored simplest, direct solutions.
● Issues and problems informed the final design

of the evaluator.

Prototype 1: naïve compilation

● Image initialization bug exposed need to control
for asynchronicity

● Similarly, big-bang could only be used at
toplevel due to asynchronicity constraint

● Student programs couldn't use advanced
language features (macros, modules).

● Advanced recursive programs could hit the
JavaScript stack ceiling.

Prototype 2: interpretation

Racket bytecode interpreter with explicit
representation for the control stack

● Reuses Racket's production level compiler
● Solves asynchronicity with delimited control
● But: interpretive overhead proved costly

enough to affect sophisticated programs
(1000-5000X slower than Racket)

Final design: 1 + 2

JS compiler, like Design 1, but avoid the
JavaScript stack entirely and maintain explicit
control stack representation, like Design 2

(Top
 (Prefix (list (ModuleVariable '+ '#%kernel)))
 (Let1
 (Constant 3)
 (Let1 (Constant 4)

(App (ToplevelRef 4 0)
 (list (LocalRef 3)

 (LocalRef 2)))))
 ...)

Example run
(let* ([x 3] [y 4])
 (+ x y))
 ...

env.push([Primitives["+"]]);
env.push(undefined);
env[env.length - 1 - 0] = 3;
env.push(undefined);
env[env.length - 1 - 0] = 4;
val = (env[env.length - 1 - 1] + env[env.length - 1]);
env.length = env.length – 2;
…
GOTO returnAddress;

Racket compile

JS translate

JS as simple intermediate
 language,

including assignments,
stack operations,

GOTOs..

Can reuse Racket compiler's
optimizations (constant folding,

loop unrolling, etc)

How do we get to GOTO?

● JavaScript doesn't have GOTO statements
● GOTO for primitive flow control, and to allow for

delimited control operations like continuation
capture

 ...
afterCallSingle:
 …
returnAddress = ...
GOTO (returnAddress) ??

Lambda, the Ultimate GOTO

● However, JS supports functions
● Each basic block transforms to a function

 ...
afterCall:
 <op1>
 …

returnAddress = &afterCall;
GOTO (returnAddress);

var afterCall =
 function(MACHINE) {
 <op1>
 ...
 };

…

var returnAddress = afterCall;
return (returnAddress(MACHINE));

JS* JS

desugaring

Example run 2
(let-values
 ([(x rest-stack)
 (stack-pop a-stack)])
 ...

(Top
 (Prefix (list (ModuleVariable
'+ '#%kernel)))
 (Let-Values
 (list 'x 'rest-stack)
 (App stack-pop a-stack))
...)

Racket compile

??

Multiple value returns

● Multiple value returns are pervasive in
functional languages
● Allow return of several values, without boxing or

mutation

● Multiple value returns affect all procedure
application positions
● Return points need to report reliable errors when

they receive the wrong number of values

Multiple values with explicit check

● A standard approach uses a special value or
flag to mark a return as multi-value; all return
contexts are responsible for checking that value

afterCallSingle:
 if multipleValuesReceived:
 raise error “Expected single value ...”
 …
…

multipleValuesReceived = false
GOTO returnAddress

Multiple values with pointer
arithmetic

Trick: implicit
branch via address
arithmetic [Ashley &
Dybvig, 1994]

When returning
multiple values,
returners will jump
to offset of regular
return address.

onMultipleValueReturn:
 ...

afterCallSingle:
 …

returnAddress = ...
GOTO (returnAddress - OFFSET)

OFFSET

onMultipleValueReturn:
 ...
afterCallSingle:
 …

returnAddress = ...
GOTO (returnAddress -
 OFFSET)

JS doesn't have pointer arithmetic...

var f = function() { … };
var g = function() { … };

… but functions are values...

f.successor = g;
g.predecessor = f;

… and we can assign attributes into them!

translates to:

var onMultipleValueReturn =
 function(MACHINE) {
 ...
 };

var afterCallSingle =
 function(MACHINE) {
 ...
 };
afterCallSingle.pred =
 onMultipleValueReturn;

…

var returnAddress = …

return(returnAddress.pred(MACHINE));

onMultipleValueReturn:
 ...
afterCallSingle:
 …

returnAddress = ...
GOTO (returnAddress -
 OFFSET)

Explicit checks

Pointer arithmetic

More details about the evaluator

Periodic, preemptive yielding of control to the
browser after n function calls

● Allows for the implementation of interrupts
● Keeps the web browser responsive to input
● Avoids the stack ceiling for long-running

computations

● Application of continuation marks on the control
frames to produce good errors messages with
stack traces

Evaluation

~2000 programs in the past year,
 from hundreds of users

Performance vs. Racket JIT

Related work

Web evaluators and programming
environments
● Server-side evaluators (Try Ruby, Try Haskell,

ideone)
– Textual output
– Non-real-time interaction with the user

● Client-side evaluators (wscheme, HotRuby,
Obrowser)
– No direct support for control operators

Contributions
● Web-based evaluator that supports functional,

event-driven programs
● Control operators to adapt to asynchronous JS,

error messages with stack traces

● Web-based programming environment
(WeScheme)
● Used in Bootstrap (http://www.bootstrapworld.org/),

by hundreds of middle school kids

● An extension of World for manipulation of the
browser DOM

http://www.bootstrapworld.org/

Future work

● Optimize the compiler and evaluator
● Improve run-time, reduce code size

● Improve WeScheme to become a premiere
programming environment for education
● Enable embedding, develop tools for to support

curricula

● Phone development
● Automatically generate Android & iOS packages
● Expose APIs for phone I/O

Thanks to...

● Very sincere thanks to my advisors: Kathi Fisler
and Shriram Krishnamurthi

● WPI ALAS and Brown PLT
● Emmanuel Schanzer, Guillaume Marceau, Tim

Nelson, Sam Tobin-Hochstadt, Jay McCarthy,
Jens Axel Sogaard, Matthew Flatt, Robby
Findler, John Clements, Scott Newman, Ethan
Cecchetti, Zhe Zhang, Will Zimrin, … too many
to list!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

